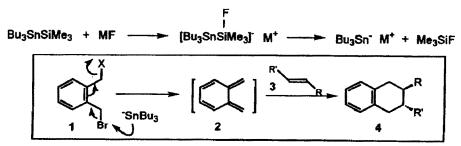


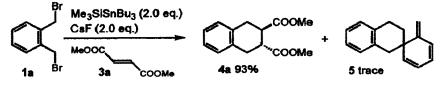
Pergamon

0040-4039(94)E0213-H

Utilization of Me3SiSnBu3 in Organic Synthesis. Generation of o-Quinodimethane from a,a'-Dibromo-o-xylene and Me3SiSnBu3-CsF

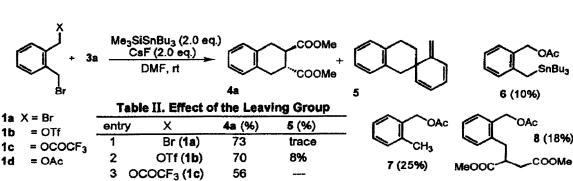

Hiroki Sato,^a Naohiro Isono,^a Kimio Okamura,^b Tadamasa Date,^b and Miwako Mori^a*

^a Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060, Japan


b Analytical Center, Tanabe Seiyaku Co., Toda, Saitama 335, Japan

Summary: The reaction of α, α' -dibromo-o-xylene with stannyl anion generated from Me3SiSnBu3 and CsF or TASF [(Et2N)3S⁺SiMe3F2⁻] in the presence of dienophiles afforded the [4+2] cyclization products in good to moderate yields.

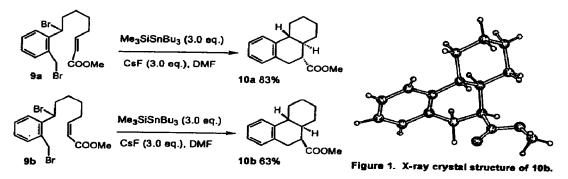
The stannyl anion, generated from Me₃SiSnBu₃¹ and R₄NX, TASF² or CsF, is effective in producing an aryl or vinyl anion.³ This result prompted us to produce the *o*-quinodimethane 2 from α, α' -dibromoxylene 1a.^{4a}~⁴¹ The [4+2] Cycloaddition of *o*-quinodimethane to an olefin is a convenient synthetic method for tetrahydronaphthalene.^{4m}~^{4x} We now want to report the generation of *o*-quinodimethane 2 from α, α' -dibromoxylene 1a using Me₃SiSnBu₃ and CsF, and the [4+2] cycloaddition of the resulting *o*-quinodimethane 2 to olefins 3.



When a THF solution of α, α' -dibromoxylene 1a, dimethyl fumarate (3a, 2.0 eq.) Me₃SiSnBu₃ (2.0 eq.), and TASF (2.0 eq.) was stirred at 0°C for 1h, the desired tetrahydronaphthalene derivative 4a⁴¹ was obtained in 25% yield along with the quinodimethane dimer 5⁵ (24% yield, Table I, entry 1). The formation of the oquinodimethane dimer 5 indicates that o-quinodomethane 2 is generated from 1a and Me₃SiSnBu₃ in the presence of TASF, and the reaction of 2 with 3a would proceed via [4+2] cycloaddition. The yield was improved when the reaction was carried out in DMF in the presence of CsF instead of TASF (entry 2). The use of 3.0 eq. of Me₃SiSnBu₃ and CsF increased the yield of the desired product 4a (93% yield, entry 5).⁶ For the solvent, CH₂Cl₂ can be used, but longer reaction times were required (entry 6).

The effect of the leaving group was examined and the results are shown in Table II. For the formation of oquinodimethane 2 from 1 and stannyl anion, generated from Me3SiSnBu3 and CsF, the reactivity of compound 1b (X=OTf) was almost same as that of compound 1a (X=Br). However, the reaction of compound 1d (X=OAc) with Me3SiSnBu3 in the presence of CsF did not afford the desired product, and the stannylated compound 6, the dehalogenation product 7 and the Michael addition product 8 were obtained in 10%, 25%, and 18% yields, respectively.

entry					products ^a	
	F	solvent	temp	time (hr)	4a (%)	5 (%)
1	TASF (2.0 eq.)	THF	0°C	1	25	24
2	CsF (2.0 eq.)	DMF	0°C	1	40	trace
3	CsF (1.1 eq.)	DMF	rt	2	58	trace
4	CsF (2.0 eq.)	DMF	rt	1	73	trace
5	CsF (3.0 eq.)	DMF	rt	1	93	trace
6	CsF (3.0 eq.)	CH ₂ Cl ₂	rt	120	78	trace

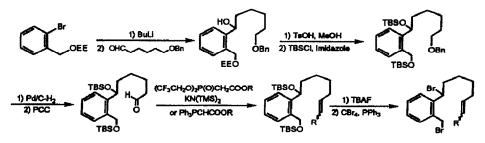

On the basis of the above results, the reaction of 1a with the various dienophiles 3 was carried out in the presence of Me₃SiSnBu₃ and CsF. The results are summarized in Table III. The yields of the [4+2] cyclization products 4a~4e were good to moderate (entries 1~5). The reaction of 1a with methyl propiolate 3g, styrene 3h and cyclopentenone 3i as the dienophiles afforded the desired cyclized products 4g, 4h, and 4i, respectively.

Subsequently, the intramolecular cyclization reaction was carried out. For the starting materials, E- and Z- α , β -unsaturated esters 9a and 9b were selectively prepared.¹⁰ The reaction of 9a with Me₃SiSnBu₃ in the presence of CsF proceeded smoothly to give the tricyclic ester 10a in high yield. The stereochemistry of 10a was determined by comparison with the reported spectral data.¹¹ The reaction of the Z-isomer 9b with stannyl anion also afforded the desired product 10b in 61% yield as a single isomer, whose stereochemistry was determined by X-ray analysis and the results are shown in Fig 1.

entry discophiles Me_3SISnBu_3 (eq.) time (hr) 4 (%) 5 (%) 1 \int_{3a}^{coode} 3.0 1 \int_{coode}^{coode} 4a ⁴ 93 trace. 2 \int_{3b}^{coode} 3.0 0.5 \int_{coode}^{coode} 4b ⁴⁹ 87 trace. 3 \int_{3c}^{coode} 3.0 1 \int_{coode}^{coode} 4b ⁴⁹ 87 trace. 4 \int_{3c}^{coode} 3.0 1 \int_{coode}^{coode} 4c ⁷ 86 trace. 4 \int_{3d}^{coode} 2.0 1 \int_{coode}^{coode} 4s ⁶ 59 1 5 $= \int_{3e}^{coode}$ 2.0 2 \int_{coode}^{coode} 4e ⁸ 45 5 6 $_{3f}^{coode}$ 2.0 2 \int_{coode}^{coode} 4g 36 20 7 $= coode_{3g}^{coode}$ 2.0 2 \int_{coode}^{coode} 4g 36 20 8 \int_{3h}^{mh} 3.0 4 \int_{coode}^{μ} 4g 36 20 8 \int_{3h}^{mh} 3.0 2					products *			
1 $\int_{3a}^{coom} 3.0$ 1 $\int_{coom}^{coom} 4s^{4}$ 93 trace 2 $\int_{3b}^{coom} 3.0$ 0.5 $\int_{coom}^{coom} 4b^{49}$ 87 trace 3 $\int_{3c}^{coom} 3.0$ 1 $\int_{coom}^{coom} 4c^{4}$ 87 trace 4 $\int_{3d}^{cn} 2.0$ 1 $\int_{coom}^{cn} 4d^{49}$ 59 1 5 $\int_{3e}^{coom} 2.0$ 2 $\int_{coom}^{cn} 4s^{9}$ 45 5 6 $\int_{3e}^{coom} 2.0$ 2 $\int_{coom}^{coom} 4s^{9}$ 45 5 6 $\int_{3f}^{coom} 2.0$ 2 $\int_{coom}^{coom} 4s^{9}$ 45 5 7 $= \frac{coom}{3g}$ 2.0 2 $\int_{coom}^{coom} 4s^{9}$ 36 20 8 $\int_{1}^{pn} 3.0$ 4 $\int_{1}^{pn} 4h^{9}$ 30 14 9 $\int_{1}^{q} 4h^{9}$ 30 14	entry	dienophiles	Me ₃ SiSnBu ₃ (eq.)	time (hr)	4 (%)	•		5 (%)
2 $1 \\ 3b$ 3.0 0.5 $1 \\ b \\ c \\ c$	1		^{4e} 3.0	1		4a ⁴¹	93	trace-
3 1_{3c} 3.0 1 $4c'$ 86 trace 4 1_{3d} 2.0 1 $4d^{40}$ 59 1 5 $-\frac{coome}{3e}$ 2.0 2 $-\frac{coome}{4e^8}$ 45 5 6 $-\frac{coome}{3g}$ 2.0 2 $-\frac{coome}{4f^4}$ 15 22 7 $-\frac{coome}{3g}$ 2.0 2 $-\frac{coome}{4g}$ 4g 36 20 8 1_{n} 3.0 4 $-\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}$	2	I	3.0	0.5	COOMe	40 ⁴⁹	87	trace
4 3d 20 1 4d ⁴⁰ 59 1 5 $-\frac{coom}{3e}$ 20 2 $-\frac{coom}{4e^8}$ 45 5 6 $-\frac{coom}{3f}$ 20 2 $-\frac{coom}{4e^8}$ 45 5 7 $-\frac{coom}{3g}$ 20 2 $-\frac{coom}{4f^4}$ 15 22 7 $-\frac{coom}{3g}$ 20 2 $-\frac{coom}{4g}$ 49 36 20 8 $-\frac{Ph}{3h}$ 30 4 $-\frac{Ph}{4h^9}$ 49 30 14 9 $-\frac{1}{2}$ 30 2 $-\frac{Ph}{4h}$ 41 27 6	3	Г -	3.0	1	COCH3	4c ⁷	86	trace
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4		2.0	1	CN CN	40 ^{4g}	59	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	\prec	2.0	2	COOMe	40 ⁸	45	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	coome 3f	2.0	2	COOMe	4f ⁴ⁱ	15	22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2.0	2	COOMe	4g	36	20
	8	ſ	3.0	4		4h ⁹	30	14
	9		3.0	2		41	22	6

Table III. Reaction of 1a with the various dienophiles

* Isolated yield.



The most remarkable characteristic for the formation of o-quinodimethane from $\alpha_1 \alpha'$ -dibromoxylene 1a and Me3SiSnBu3 in the presence of CsF is as follows. The starting material is readily available, the reaction proceeds even at 0 °C (usually at room temperature) and the reaction time is very short. Thus, the stereochemistry of the cyclized product could be controlled.

Further studies are now in progress.

References

- 1.
- Chenard, B.; Laganis, E. D.; Davidson, F.; RajanBabu, T. V. J. Org. Chem. 1985, 50, 3666. (a) Noyori, R.; Nishida, I.; Sakata, J. J. Am. Chem. Soc. 1983, 105, 1598. (b) Middleton, W. J. Org. Synth. 1986, 64, 221. (c) Kuroboshi, M.; Hiyama, T. J. Synth. Org. Chem. Jpn. 1990, 48, 1050. 2. Fujita, M.; Hiyama, T. J. Am. Chem. Soc. 1985, 107, 4085. Fujita, M.; Hiyama, T. Org. Synth. 1990, 69, 44.
- (a) Mori, M.; Kaneta, N.; Isono, N.; Shibasaki, M. Tetrahedron Lett. 1991, 32, 6139. (b) Mori, M.; Kaneta, N.; Isono, N.; Shibasaki, M. J. Organomet. Chem. 1993, 455, 255. (c) Mori, M.; Isono, N.; Kaneta, N.; Shibasaki, M. J. Org. Chem. 1993, 58, 2972. 3.
- (a) Cava, M. P.; Napier, D. R. J. Am. Chem. Soc. 1957, 79, 1701. (b) Cava, M. P.; Deana, A. A. J. 4 Am. Chem. Soc. 1959, 81, 6458. (c) Alder, K., Fremery, M. Tetrahedron 1961, 14, 190. (d) Am. C.nem. Soc. 1959, 81, 0458. (c) Alder, K.; Fremery, M. Tetrahedron 1961, 14, 190. (d) Nozaki, H.; Noyori, R. Tetrahedron 1966, 22, 2163. (e) Michl, J.; Tseng, K. L. J. Am. Chem. Soc. 1977, 99, 4840. (f) McComie, J. F. W.; Perry, D. H. Synthesis 1973, 416. (g) Ito, Y.; Yonezawa, K.; Saegusa, T. J. Org. Chem. 1974, 39, 2769. (h) Kambe, N.; Tsukamoto, T.; Miyoshi, N.; Murai, S.; Sonoda, N. Bull. Chem. Soc. Jpn. 1986, 59, 3103. (i) Stephan, D.; Gorgues, A.; Le Coq, A. Tetrahedron Lett. 1984, 25, 5649. (j) Chew, S.; Ferrier, R. J. J. Chem. Soc., Chem. Commun. 1984, 911. (k) Kerdesky, F. A. J.; Ardecky, R. J.; Lakshmikantham, M. V.; Cava, M. P. J. Am. Chem. Soc. 1981, 103, 1992. (l) Inaba, S.; Wehmeyer, R. M.; Forkner, M. W.; Rieke, D. R. J. Org. Chem. 1988, 53, 339. (m) Cava, M. P.; Deana, A. A. J. Am. Chem. Soc. 1959, 81, 4266. (n) Flynn, C. R.; Michl, I. J. Am. Chem. Soc. 1973 95, 5802. (o) Flynn, C. R.; Michl, I. J. Am. Flynn, C. R.; Michl, J. J. Am. Chem. Soc. 1973, 95, 5802. (o) Flynn, C. R.; Michl, J. J. Am. Chem. Soc. 1974, 96, 3280. (p) Dolbier, W. R., Jr; Kazumasa, M.; Michl, J.; Horak, D. V. J. Am. Chem. Soc. 1977, 99, 3876. (q) Roth, W. R.; Biermann, M.; Dekker, H.; Jochems, R.; Mosselman, C.; Hermann, H. Chem. Ber. 1978, 111, 3892. (r) Funk, R. L.; Vollhardt, K. P. C. Chem. Soc. Rev. 1980, 9, 41. (s) Ito, Y.; Nakatsuka, M.; Saegusa, T. J. Am. Chem. Soc. 1980, 102, 863. (t) Roth, W. R.; Scholz, B. P. Chem. Ber. 1981, 114, 3741. (u) Tuschka, T.; Naito, K.; Rickborn, B. J. Org. Chem. 1983, 48, 70. (v) Ito, Y.; Nakatsuka, M.; Saegusa, T. J. Am. Chem. Soc. 1987, 43, 2873. (w) Han, B. H.; Boudjouk, P. J. Org. Chem. 1982, 47, 751. (x) Sano, H.; Ohtsuka, H.; Migita, T. J. Am. Chem. Soc. 1988, 110, 2014.
- Errede, L. A. J. Am Chem. Soc. 1961, 83, 949. 5.
- 6. The reaction of 1a with dimethyl fumarate (3a, 2eq.) in the presence of Bu3SnLi (3eq.), generated from Bu3SnH and LDA, did not afford the desired product 4a.
- 7.
- Newman, M. S.; Zhan, H. V. J. Am. Chem. Soc. 1961, 83, 949. Masuyama, Y.; Haratani, Y.; Kurusu, Y. Chem. Express 1988, 3, 127. 8.
- 9. Eisenbraun, E. J.; Melton, R. G.; Flanagan, P. W.; Hamming, M. C.; Keen, G. W. Prepr., Div. Pet. Chem. Am. Chem. Soc. 1971, 16, No 3, B43.
- 10. The starting materials 9a and 9b were prepared as follows.

11. The corresponding ethyl ester of 10a was synthesized in 81% yield. The spectral data of the ethyl ester agreed with those reported by Nicolau, K. C., Barnette, W. E.; Ma, P. J. Org. Chem. 1980, 45, 1463.

(Received in Japan 3 December 1993; accepted 10 January 1994)